

Cosmological observations

Will Percival

The University of Waterloo & Perimeter Institute

Current: CMB

Pre-WMAP

Multi	pole	l
marci	POIO	\sim

	Parameter	Results: scalar only		Results: with tensor component	
		CMB	CMB + 2dFGRS	CMB	CMB + 2dFGRS
	$\Omega_{ m b}h^2$	0.0205 ± 0.0022	0.0210 ± 0.0021	0.0229 ± 0.0031	0.0226 ± 0.0025
	$\Omega_{ m c}h^2$	0.118 ± 0.022	0.1151 ± 0.0091	0.100 ± 0.023	0.1096 ± 0.0092
	h	0.64 ± 0.10	0.665 ± 0.047	0.75 ± 0.13	0.700 ± 0.053
Using the	$n_{\rm s}$	0.950 ± 0.044	0.963 ± 0.042	1.040 ± 0.084	1.033 ± 0.066
CMB data	$n_{\rm t}$	_	_	0.09 ± 0.16	0.09 ± 0.16
compilation	r	_	_	0.32 ± 0.23	0.32 ± 0.22
of Section 2	$\Omega_{ m m}$	0.38 ± 0.18	0.313 ± 0.055	0.25 ± 0.15	0.275 ± 0.050
	$\Omega_{ m m}h$	0.226 ± 0.069	0.206 ± 0.023	0.174 ± 0.063	0.190 ± 0.022
	$\Omega_{ m m}h^2$	0.139 ± 0.022	0.1361 ± 0.0096	0.123 ± 0.022	0.1322 ± 0.0093
	$\Omega_{\rm b}/\Omega_{\rm m}$	0.152 ± 0.031	0.155 ± 0.016	0.193 ± 0.048	0.172 ± 0.021

The CMB in 2002; astro-ph/0206256

CMB today: Planck

Planck is awesome

Parameter	Plik best fit	Plik [1]	CamSpec [2]	$([2] - [1])/\sigma_1$	Combined
$\Omega_{ m b}h^2$	0.022383	0.02237 ± 0.00015	0.02229 ± 0.00015	-0.5	0.02233 ± 0.00015
$\Omega_{ m c}h^2$	0.12011	0.1200 ± 0.0012	0.1197 ± 0.0012	-0.3	0.1198 ± 0.0012
$100\theta_{MC}$	1.040909	1.04092 ± 0.00031	1.04087 ± 0.00031	-0.2	1.04089 ± 0.00031
τ	0.0543	0.0544 ± 0.0073	$0.0536^{+0.0069}_{-0.0077}$	-0.1	0.0540 ± 0.0074
$\ln(10^{10}A_{\rm s})$	3.0448	3.044 ± 0.014	3.041 ± 0.015	-0.3	3.043 ± 0.014
<i>n</i> _s	0.96605	0.9649 ± 0.0042	0.9656 ± 0.0042	+0.2	0.9652 ± 0.0042
$\Omega_{ m m}h^2$	0.14314	0.1430 ± 0.0011	0.1426 ± 0.0011	-0.3	0.1428 ± 0.0011
H_0 [km s ⁻¹ Mpc ⁻¹]	67.32	67.36 ± 0.54	67.39 ± 0.54	+0.1	67.37 ± 0.54
$\Omega_{\rm m}$	0.3158	0.3153 ± 0.0073	0.3142 ± 0.0074	-0.2	0.3147 ± 0.0074
Age [Gyr]	13.7971	13.797 ± 0.023	13.805 ± 0.023	+0.4	13.801 ± 0.024
σ_8	0.8120	0.8111 ± 0.0060	0.8091 ± 0.0060	-0.3	0.8101 ± 0.0061
$S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5} . .$	0.8331	0.832 ± 0.013	0.828 ± 0.013	-0.3	0.830 ± 0.013
Z _{re}	7.68	7.67 ± 0.73	7.61 ± 0.75	-0.1	7.64 ± 0.74
100 <i>θ</i> _*	1.041085	1.04110 ± 0.00031	1.04106 ± 0.00031	-0.1	1.04108 ± 0.00031
$r_{\rm drag}$ [Mpc]	147.049	147.09 ± 0.26	147.26 ± 0.28	+0.6	147.18 ± 0.29

Planck et al. 2018; arXiv:1807.06209

Inflation

Tensors: CMB B-modes (Litebird, Simons, S-4) f_{nl} : low redshift surveys

Dark Energy

We cannot explain Λ with known physics why is Λ so small?

$$\rho_{\Lambda}|_{\text{obs}} = \frac{\Lambda}{8\pi G} \sim (10^{-3} \,\text{eV})^4$$

$$\rho_{\Lambda}|_{\text{theory}} \sim (M_{\text{new physics}})^4 \sim (1 \,\text{TeV})^4 >> \rho_{\Lambda}|_{\text{obs}}$$

$$\rho_{\Lambda} \lesssim \rho_m : \text{ crucial for structure formation}$$

but $\rho_{\Lambda} \propto a^0$ while $\rho_m \propto a^{-3}$

why so fine tuned?

Investigating whole new phenomena

Current: galaxy clustering

The BOSS galaxy survey

- Survey now complete, with data taken over 5 years (2009-2014)
- Redshifts for 1,145,874 galaxies
- Two galaxy classes with different selections: LOWZ and CMASS
- Data Release 12 galaxy catalogues now available:

http://data.sdss3.org/sas/dr12/boss/lss/

The galaxy clustering signal

Samushia et al. 2013; MNRAS, 439, 3504

Clustering (BAO) as a standard ruler

Current BAO measurements

Plot from Bautista et al. 2017; arXiv:1712.08064

Redshift Space Distortions (RSD)

Samushia et al. 2013; MNRAS, 439, 3504; Alam et al. 2016, arXiv:1607.03155

Current RSD measurements

Zarrouk et al. 2018; arXiv:1801.03062

Combining with Planck data

WATERLOO Testing modified gravity: Growth Index

Mueller et al. 2016, arXiv:1612.00812

Newtonian potentials

$$ds^{2} = a^{2}[-(1+2\psi)d\tau^{2} + (1-2\phi)d\mathbf{x}^{2}] \qquad \gamma_{\rm slip} = \frac{\psi}{\psi}$$

Perturbation equations

$$\nabla^2 \psi = 4\pi G a^2 \rho \Delta \times G_{\rm M} \qquad \text{Growth of structure}$$

$$\nabla^2 (\psi + \phi) = 8\pi G a^2 \rho \Delta \times G_{\rm L} \qquad \text{Bending of light}$$

Phenomenological model

Mueller et al. 2016, arXiv:1612.00812

 \mathcal{A}

WATERLOO Testing modified Poisson equations

Current: weak lensing

KiDS-450 weak lensing data

KiDS weak lensing data

Hildebrandt et al. (KiDS consortium) 2016, arXiv:1606.05338

KiDS weak lensing S₈

Hildebrandt et al. (KiDS consortium) 2016, arXiv:1606.05338

DES weak lensing data

Troxel et al. (DES consortium) 2017, arXiv:1708.01538

DES weak lensing S₈

Concluding remarks ... looking forwards

Survey improvement

Reid et al. 2015, arXiv:1509.06529

Observational systematics

Trend with stellar density

Ross et al. 2012; arXiv:1203.6499

- We can correct for known unknowns
- We cannot correct for unknown unknowns
- We want to turn unknown unknowns into known unknowns by knowing as much as we can about the survey
- Survey must be designed with systematics as much as statistics in mind

Hardware imprint on sky

Close up of VIPERS observations Mohammad et al. 2018; arXiv:1807.05999

Close up of expected DESI observations Smith et al. 2018; arXiv:1809.07355

A practical algorithm

Link between observed and non-observed pairs based on selection probability:

- different random choices for observations
- different spatial positions of observations

To find the selection probabilities, need to rerun simulation of observing strategy ~1000 times

Potentially computationally challenging (storing probabilities), but introduce a new Monte-Carlo scheme based on bitwise weights stored per galaxy, so that pairwise weights can be determined "on the fly"

DESI: Fiber assignment

VIPERS: slit assignment

- Current large-scale structure observations agree with LCDM
- Huge progress in cosmology over the last 20 years
 - Post inflation, pre-recombination universe now very well understood
 - Huge questions remain: Inflation, Dark Energy, Dark Matter
- Current surveys have already shown the importance of systematics and this will become increasingly important for the next generation
 - better calibration, removal of contaminants
 - Faster, better calculations (computational data challenge)
 - including more information: weights, including Bispectrum
 - Better models (perturbation theory, EFT, baryons ...)