

Ground-Based Multi-Object Spectroscopic Facilities

Jennifer Marshall Texas A&M

Ground-Based Multi-Object Spectroscopy has a long tradition

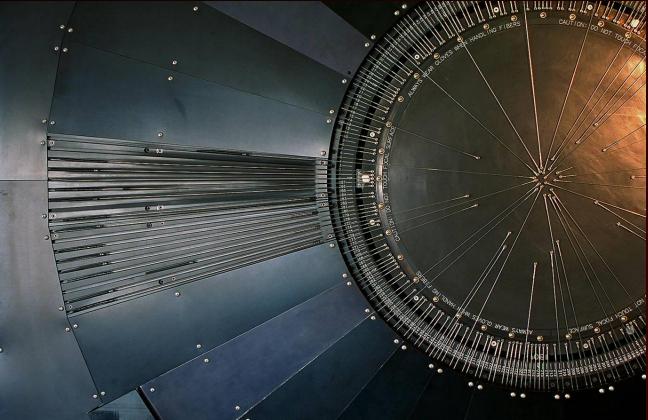
 Multi-object spectroscopy has been a cornerstone of observational astronomy for over 100 years

Annie Jump Cannon ca. 1930

 Others have used slitless spectroscopy, primarily surveys using Schmidt telescopes with objective prism

The modern era: SDSS

• SDSS set the stage for modern massive spectroscopy



Subsequent generations of SDSS science and instrumentation have expanded on the original
SDSS-V will add robotic fiber positioners to APOGEE infrared spectrographs

Hydra spectrographs

• Radial fiber positioner spectrographs built for 4m KPNO, CTIO, and WIYN telescopes in the 1990s

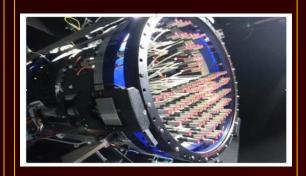
Decommissioned in favor of more modern technology

Modern fiber positioner architectures

Echidna-style

Built for 2dF, Subaru, VLT, SOAR, others

Cobra-style


Theta-phi

• Will be used in DESI, PFS

Starbugs

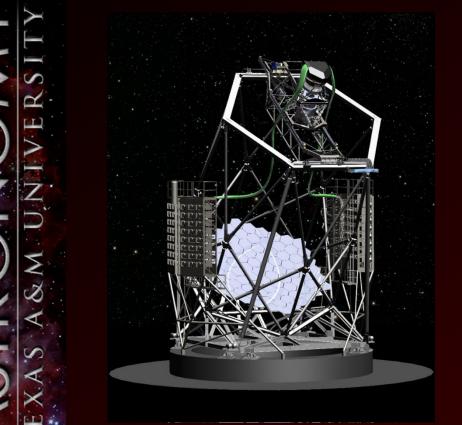
 Fibers "walk" across glass field plate

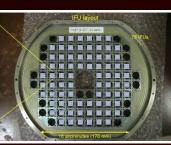
• MANIFEST: 1000s of Starbugs in the 20 arcmin focal plane of GMT that will feed all facility spectrographs

Fiber positioner-fed spectrographs

2dF: 4m AAT, 392 fibers, echidna positioner, 2 sq deg FOV AAOmega: R~1k to R~10k Hermes: R~50k

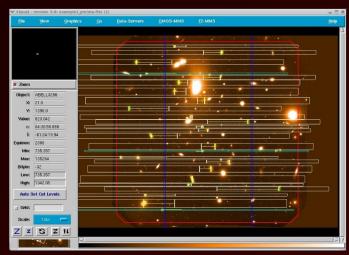
FLAMES: 8m VLT, OzPos positioner UVES: 8 fibers, hires spectrograph Giraffe: 130 fibers, moderate resolution


LAMOST: 4m telescope, 4000 fibers, R=500, 1000, 1500



TAIPAN: 150 fibers on Starbugs, 1.2m telescope,R~2100

HETDEX/VIRUS



- HETDEX: blind 420 deg² spectroscopic survey
 - Constrain expansion history over 1.9 < z < 3.5
 - Line flux limit 3.5e-17, continuum detection at m_{AB}~22
- VIRUS: first highlyreplicated instrument in optical astronomy
 - 156 fixed spectrographs
 - 350 550 nm with R~700
 - 33,600 spectra per exposure

Slit mask-fed spectrographs

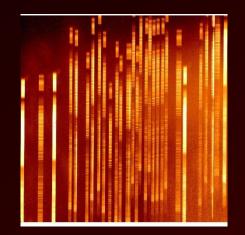
- Not massively multiplexed (lower A-Ω), but still multiobject
- Nearly every 10m-class telescope has at least one:
 - Gemini: GMOS
 - Magellan: IMACS, LDSS3
 - Keck: LRIS, DEIMOS
 - VLT: VIMOS
 - LBT: MODS
 - GTC: OSIRIS
 - SALT: RSS
- These are generally the most subscribed instruments on their telescopes

GMOS mask design software

IMACS slit mask production

Infrared multi-object spectrographs

MOSFIRE


- 10m Keck telescope
- 46 slits in a cryogenic Configurable Slit Unit

- Same technology as JWST/NIRSpec, GTC/EMIRS
- 0.9–2.5 μm
- 2200 < R < 4800

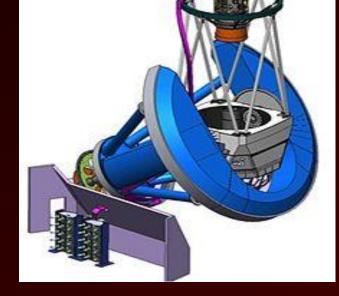
MMIRS

- 6.5m MMT/Magellan
- Cryogenic slit mask

 Based on Flamingos/ Flamingos-2 design

Flamingos-2

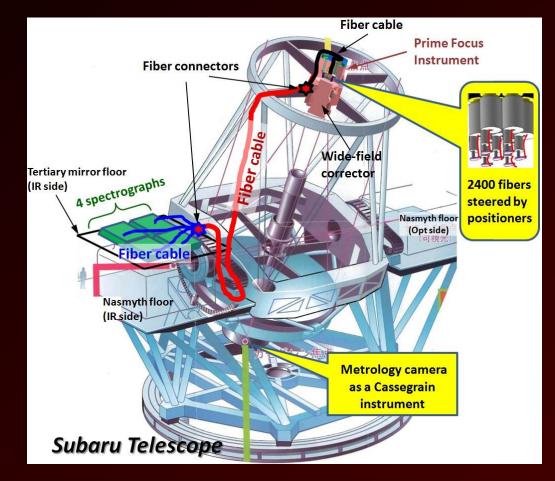
- 8m Gemini
- 6 arcmin FOV
- Imaging and longslit



 Multioobject mode awaiting commissioning

The future: DESI

- 4m Blanco telescope
- 5000 fiber cobra-style positioner feeds 10 3-arm
 - spectrographs
- 360 < λ < 980 nm
- 2000 < R < 5000



- First light: 2019
- Science: will enable a Stage IV dark energy measurement

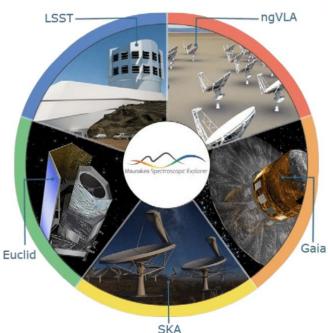
The future: PFS

- 8m Subaru telescope
- 2400 fibers with Cobra-style positioner feeds four 3-arm spectrograph
- 380 nm < λ < 1.26 micron
- 2000 < R < 4000
- First light: 2019
- Science: cosmology

The future: GMT/TMT

MANIFEST positioner will feed 10s to 1000s of fibers to facility instruments

- GMACS, optical moderate resolution spectrograph
- G-CLEF, optical hires spectrograph
- GMTIFS, infrared moderate resolution spectrograph
- GMTNIRS, infrared hires spectrograph


TMT also has 20 arcmin field of view

• WFOS is a first light moderate resolution optical wide field spectrometer

The future: MSE

- Maunakea
 Spectroscopic
 Explorer
- 11.25m transformed CFHT telescope

- First light: 2026
- Science: everything!

Enclosure: Calotte style with vent modules for excellent airflow

Fiber Transmission System: 3,249 fibers leading to low/moderate resolution spectrographs; 1,083 fibers leading to high resolution spectrographs

1 pter

Low/Moderate resolution spectrographs: six located on both instrument platforms

Telescope and Enclosure Piers: modified CFHT structures Fiber Positioner System: 4,332 positioners providing simultaneous complete full field coverage for all spectroscopic modes, with upgrade path to multiobject IFU system

Wide Field Corrector and Atmospheric Dispersion Corrector: 1.5 square degree field of view

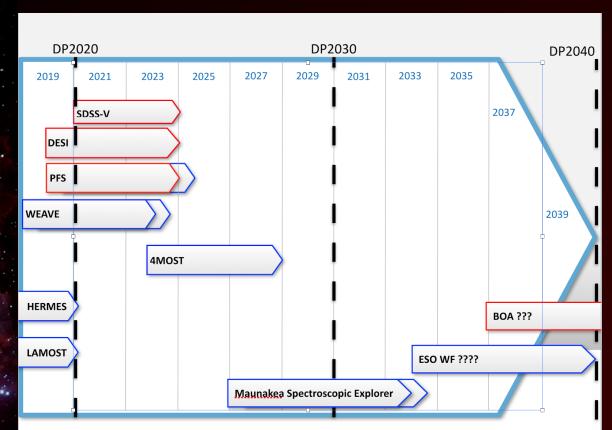
> Telescope Structure: prime focus configuration, high stiffen-to-mass ratio open-truss design to promote airflow

M1 System: 11.25m aperture with 60 1.44m hexagonal segments

High resolution spectrographs: two located in environmental stable Coude room

MSE science

Accessible sky	30000 square degrees (airmass < 1.55)						
Aperture (M1 in m)	11.25m						
Field of view (square degrees)	1.5						
Etendue = FoV x π (M1 / 2) ²	149						
Modes	Low		Moderate	High			IFU
Wavelength range	0.36 - 1.8 μm		0.36 - 0.95 μm	0.36 - 0.90 μm #			
	0.36 - 0.95 μm	J, H bands	0.56 - 0.95 µm	0.36 - 0.45 μm	0.45 - 0.60 μm	0.60 - 0.90 µm	IFU capable;
Spectral resolution, R = $\lambda_c/d\lambda$	2500 (3000)	3000 (5000)	6000	40000	40000	20000	
Multiplexing	>3200		>3200	>1000			anticipated
Spectral windows	Full		≈Half	$\lambda_c/30$	λ,/30	λ./15	second generation
Sensitivity ★	m=24 @ SNR=2		m=23.5 @ SNR=2	m=20.0 @ SNR=10			capability
Velocity precision \star	20 km/s @ SNR=5		9 km/s @ SNR=5	< 100 m/s @ SNR=30			
Spectrophotometic accuracy	< 3 % relative		< 3 % relative	N/A			



- MSE is capable of conducting multi-object spectroscopy on science targets on three-quarters of the entire sky:
 - 1.5 square degree science field of view
 - Operate at three different resolutions, from R~2,500 (low), R~6,000 (moderate) to R~40,000 (high)
 - >3200 spectra per exposure at low or moderate resolution per telescope pointing
 - >1000 spectra per exposure at high resolution per telescope pointing
 - Wavelength range stretching from blue-optical to the near-infrared

See MSE Science Book 2018 for more details

SnowPAC2018: Roadmaps to Wide Field Spectroscopic Surveys

In the landscape of future LSST (even DES) spectroscopic followup, there is a lot missing:

- Aperture
- Hemisphere
- The future

The future of wide field survey spectroscopy, adapted from Jeff Newman. Disclaimer: dates are rough and preliminary.